Performance of Ridge Estimators Based on Weighted Geometric Mean and Harmonic Mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Comparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature

In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...

متن کامل

On weighted mean distance

In this paper we study the average distance in weighted graphs. More precisely, we consider assignments of families of non-negative weights to the edges. The aim is to maximise (minimise, respectively) the average distance in the resulting weighted graph. Two variants of the problem are considered depending on whether the collection of weights is fixed or not. The main results of this paper are...

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Research

سال: 2020

ISSN: 2070-0245,2070-0237

DOI: 10.3329/jsr.v12i1.40525